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Abstract

The far-fleld brightness loss due to r 1linear refraction of a laser beam of finite
rransverse extent is a limitation for phase conjugation. We present exact calculations,
supported by measurements, for these effects in Gaussian beams.

Introduction

Non) inear refraction is a familiar consideration in the optical design of most high-
power, short-pulse laser systems. Practical laser beams must be apodized in some
fashion, and the apodization leads to intensity-dependent lensing in material media which
can seriously degrade the far-field pattern which the system would otherwise produce.
Fven in high-power gas lasers, where the nonlinear susceptibility of the laser medjum is
ordinarily quite smal), brightnesas loss can be significant in a single window.

Such effects have been largely ignored in the initia) treatments of phase conjuga*ion
via degenerate four-wave mixing (DFWM) although one of the major present applications és
to phase an? pointing correction in high-power lasers. 1In one class of such proposals<,
a Yarge third-order optical nonlinearity identical to that which causes self-focusing is
relied upon *to produce the conjugste wave efficiently, while the schemes which avoid
relying solely upon large real nonlinesar susceptiblityl are apt to be limited by the
same effects in their practical application.

This limitation arises from the fact that the product of pump-becam intensity and
optical path length required for efficient phase conjugation is similar to that which
can, in certain instances, cause sufficient pump wavefront distortion to degrade
~aconstructed wave quality.

In order to {llustrate this point, consi{der the relationship between the coupling
coefficient K, which figures in phase-conjugate reflectivity,

R = tun? (KL) (1)
and the phase change g which occurs due to the propejation of one of the pumps at the
intensity required to produce & given reflectivity., For the sake of simplicity, assume
an lsotropic loss)iaw material of length L with nonlinear index nz. The refractive
index change lse

n(z)=ng ® An(z) « ng < Ed(z,t)>, (2)
and the corresponding phase roeardacionLln given by
7 - /a: kg An(z) (3)
o
(where Ry = w/c) for a given ajectric fie)d distribution. PFor a single wave with
amplitude L1, EqQ. 2 gives 4n = 1/2 n3Ev\4. However, in the Lase corresponding to
DFWM, two counterpropagating, moncchromatic, infinite plane waves o oqu,] amp) itude IEy
together groduco a standing refractive i{ndex grating, An(z) = 2n3k cons (k noz).
From Eq. 3, the phase change seen by euch wave in this cass is twtéo as qroit on the
average as that for one wave alone,
A % Xy r2 B)¢ L = KL (4)
and is equal to the pmduccs KL.

From Eq. ', the conditions necessary to give a 50% conjugate reflectivity will also
alter the phare of each pump wave by 0.62 n /% radians on passing through the sample.

TWork performed under the auspices of the U, 8, Department of Energy.
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A'tmough =ha case c~r ap~dized pumps '3 ;j;omewhat mor= complicated in Aetail =-an that
imscribaed in “he preceding 3imdle analysis, >nce 3igniflicant wavefront 3{igtHhrtion ras
xocurred, we may estimate a digtortion of -he conjugate wavefront aqLal o 26 = 2,47
-adians '‘4/5 :n free 3pace) arising from nonlinear refraction of the pumps when K is
~otally real and R = 50%,

One reason for ignoring this effect has been the lack of simple analytical and
exper1mental models for detarmining the dependence of wavafront diatortion on intensity
for gpecific agodlzations. It is the purpose of this paper to report an extension of
earlier work' -/ giving a4 complete description of the far-fleld intensity distribution
which resu)ts from nonlinear refraction occurring in the near-field of a general
“ypergaussian profile heam. The form of this result is sufficiently simple to permit
eacy numerical integqration over time, rydius or both in the far field, and thereby agive
direct comparisons with measurements of encircled power or energy. These relationships
ara especially easy to use when the Iintensity profile is that of a normal Gaussian, even
when a Gaussian time variation i{s present in the laser pulse.

We will first develop the general hypergaussian solution, then specialize to the
Gaussian casse and give experimental examples which ara well described by these results.
We wil)l ghow that, In many casea, the far-field brightnesc l1oss is an extremely sensitive
way of measuring the nonlinear index.

Far-FPield Pattern of a A rqgaussian Beam in a Thin, Uptically Nonlinear Window

We assuma an axisymmetric electric-field amplitude distribution of the form:
B(r,0~)/Eq = exp(-arP] , p 22, a = (107 (s)
!ncident on a t>in anti-reflection coated, transparent w.ndow of isotropic nonlinear

naterial with thickness L. If the window is sufficilently thin, {t will [impart only a
phase distribution to the exit beam, so that

E(r,L+)/Eq ® olp[-nrp+1! oxp(-Zurpn . (6)
3ince the intensityl I = cnR2/8v is conserved across an anti-reflection coated

‘ntarface, the internal (E]) and external) (E,) flelds are related by Ej = EOAJE:
and from Egqa. 2 anc ), the parameter B |3 related to the other variables by:

B e konaP1?2 L/2 = kqnaBe? L/2n . (7)
B {s the phase shift produced In the center of the beam by nonl!near refraction, and is

eometimas called the "heam broakup parameter.” To convert from esu to practicsal units
tw/cmé), we write

B = koﬂzron/no ’ (7.)
sssuming An<<ng, with Ag(cmZ/w) = (4rx107/c) nz(esu).

The window le sufficiently thin for che approximations [(nvolved in Eq. 6§ to be valid
when the typical change in ray direction within the sample, ¢ = (B/27) (Ay/n)/w {8 much
‘ess than w/i, or the Fresne! number

nwi/tig 3> B/2n (8)

for A ]=-cm=diameter TO2 beam .n Ge, for example, with B = 10, we require only that
L<” 990 em.

The lim{tatizn set bv the growth of small-gcale instabilities {n the beam profile is a
rore se¢rious one even for CO; wavelergths. The quantities of ‘nterest here are the
transverse 3pacial frequency Xm e 2n/\ for the ripples with largest growth rate,
and the aria) qain gy experienced By thedd ripplea. The predictions of the linearized
Dlane-wave thaory for this problem” can be expressed in the form:

Im = B/L, K= R (9)
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Figure 1. Conceptual Arrangement for Studyirg the Tar-Fleld Pattern

The field at tho lens focal plane ls the axisymmetr!~ apacial Four!er Trarsform
{Hanke! Transform) of the fleld produced by =he window. In verms of the fleld of Eq. 6,
f(r) = E(r,L+)/Eq, and the normalized focal plane :sdiaJ coordinate
r ® kgre/f, the ?OCIJ plane field g(#) = E(f)/Egs (871

-
g(F) = z.-r/dr r £(r) Jo(rB) = h {£(o)}. (10)
=]

To find the Hankel Tranaform of cach one of the hyperqgaussian e’ements of the series
expansion of £q. &, we employ the moment theorem to Eind -
n in
- (-1) mzn+1r
3 ,2n

h

.-mll‘p i - 17
a=o (al)

[
-marP =(n+l n+
vherell o, * S ar 17 T = % (ma) (b/p r(--PJ)
[}
» P L ) ()
a0 that h 3 e 2 - < 2: 2n 2 (an+3)/p ‘
P M= 3°7(an)® (ma)
ow from Eq. 6, with a = (1/wP, -
o SO UBE (el (2P (12)
kwo

10 .at, defining @ = (2/w) = 2ai/D, and u = (f/w), an” uwing Eq. 11 to transform Eq. 1
erm by term, we have:

e (-1)% u?® r@“,,ﬂ)

2 2 R
2 3w gﬁz AN (13)
(r) [ ] —— ——— —
r P EEL =0 (nl)z (zk+1)(2n+§)/p

Tinal'y, to form the {ntensity qp(?) q; (f) we use the woln:lonlhlpl




repeatedly to find:

. ~ 2 ‘ -1
jg_(r)! (-B )
P ‘Z Z’ m!(2k-m)!(4k-2m+l)2/p (2m+1)2/"

k=o m=o

(14)

- (% (s+1)] T8 (2-a+1))

ot 02g41) [ 2(1ma+1) [ak-20+1)2/P]1 "8 (2me1)2/P12

i (-u2)*
=0

The constant € = 1/ r2 (2/p) is chcien so that gig |¢p(°)|2 -1

Alternatively, BEq. 14 may be written in a simpler form that also leads to more convenient
numerical computation when explicit radial integration is not required. This is:

2
2 (-u?)® r[; (w+1)]
leg(z) 1% = [Z ﬁrﬁ- Z (@2 (4xs1) 2/P) (m+1)

k=0
(14a)
- 2 2
o 5 o
k=0 m=c
cjalization to the Normal Gaussian
When p=2, Eqs. 14 take on a much simpler form, given by
- ~ m 2(2k+) 21
-~ .2 - 2.k (=1) exp { - [;@ he Ut (15)
lgg(r)|® = L‘ B Z mT (2k-m) 1 (4k-2m+1) (am+
kwo m=o
and
- 2 k 2 - 2 k 2
o, (rl3a LI YD B e |y 3 0T e | [ 0O
2 o (4k+1)(2K)1 e (4k+3) (Desl) ! ‘
on axis, 2
2 2.k 2 1 2.k
2 =B -B
l85¢0)]% = [Z h‘:i'nrm—] *[” ) T ]
k=o keso Qe
- 5 [c:’2 (8) + 83, m]
where C2 and 82 are the Fresne) integrals,
z z
1 ¢ t 1 sin t
C.(z2) » == w8t dat ) M e dt . QA7
¢ /3 j vt 82 (2 B J vt an
(o] o]

®n, (17) was presented ear)ier by Marburger.



Relationship to the Airy Digtribution
In the 'imit 2 - =, 3 « o}

L2 2 2 2 re2g20]® T2 30w |
g (r)! ——— Z‘_——L—T = = - ' \18)
P o (otl) (mH)” - J ()

which is the appropriatel)y normalized Airy distribution we would expect to find in the
focal! plane in the absence of nonlinear ocptical effects, due to a uniformly illuminated
lens pupil of diameter 2w.

Encircled Energy or Power

Eq. 4 was presented to provide a mears for explicitly forming the radia) integral to
some limit uy, in order to determine the fraction of total energy or power encircled by
a focal-plane iris of given radius. It is clear that this can be done, at least
numerically, since BEq. 14 is a single series in powers of the irtensity (B) and of the
radius (u), permitting temporal and/or radia) inteqration. Fowever, the explicit form of
these jntegrals for yeneral p is not especially instructive.

However, when pe2, the Gaussian beam solution given by Egq. 15 may be integrated
directly to give:

/e,
/df'z'fri'qu.x?)]z - x o, () [-z(zxm)ub ]
Wola) == 2 a1 S BDE Y (L e | T @] (g
y (2kel) et mt (2k=m) |
& antlg£) 2
o

for the fraction of total) focal plane energy containesd within the normalized radius n,.

Temport! Integration of Eqs. 14, 15 or 19, is readily performed. We note that since
these relationships, as well as 2q. 6, are dimensionless (transmission-like), it is
necessary to multiply the quantity by an a’iditional) power c¢f intensity prior to
time-averaging. I% B = B,f(t), for example,

]dt lgyr )| Bt

~ 2 =
<lgy (r,8) %>, = (20)

fdt B(t)

In every calo, then, time averaying comea down to replacing B2K in the particular
»

sum by Bg2k+1) /If(3k+1)(c) ae, nnd renormal {zing by the quantity [B, /‘f(t)dt].
-l
As an example, (£ f(t) = 2 -(t/1)?

B 2k
then pAK e 2 +._ (20s)

in Eqe. 14, 1% or 19 is equivalent to performing the time average of that expression over
a laser pLlse with a Gaussian time variation.

The The Importance of Beam Profiles

Because the set of hypergaussian functions smoothly spans the range from a simple
Gaussian racial distribution to a "hard-apertured” beam via adijustment of a single index,
ft {g useful In the present context for assessing the impact of nonlinear refraction on
the far-Cield pattern of practical laser devices.
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Pigure 2. Hypergaussian Intensity Distributions for p = 2,7, 8, 20 and 50

Using the preceding relationships, it is easy to show that the near-field
distributions of Fig. 2 are markedly different In regard to the sensitivity »f their
corresponding far-field distributions to increasing B. For example, Fig. 3 and 4 show
the normelized far-fiwld radia) distributions calculated for p=2 and p»20, respectively,
as B var.es from 1l to 10. 1In both figures, the normalization described in connection
with Eq. 14 is used, for unit on-axis intensity {n the absence of nonlinear effects.
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Figure 3. <Calculated Far-Fie)d Distributions Figure 4. PFar-Fie)d Distribut.ors
for a Gausléan Beam at B Varlies as in Pig. 3, but for p=20.
from 1 to 10.

The Strehl ratiol?, by which the central intenslty in the far-fie)d distribution is
re)ated to that which would exist i~ the ahgencr of aberrations, is better than 50\ in
the second case, even for Bell, but !3 reduced nearly six-fold for a simple Gaussian beam
under the same conc¢itions, In some cases, e¢.g., p = * and B = 5,18, a zero Streh) ratio
is obtyined. Further deta!'s regar®ing on-axis intensities are provided {n Ref. 13.

Althoughr jt ls convenient for many experimantal purposes to employ 1 beam with ar
accurately Gaussjian tranasverse profile, this shape !s very near'y a wo‘'st case for
nonlinear refractive affects in che far field. The implications of these results depend
upon whether it js desired tc maximize or minimize these effects. 1In the remainder of



this discussion, it is assumed that we wish to find experimental conditions that
gengitively indicate non'inear refraction, in order to provide a means of measuring
nenl inear index, and that the foregoing discussion will be used to show how to minimize
their impact in laser systems.

The Effect of Time- and Space-Averagirg

The gquantities we are most often interested in studying are seldom peak temporal or
spacial intensities, but rather time- or gpace-averages, as, for example, the total
energy encircled by a far-field aperture of given size during a laser puise. Having
picked a Gaussian profile beam as the most easily realized profile which provides 3ood
sensitivity to nonlinear index, and assuming also a Gaussian-shaped pulge, Fig. 5
compares the sensitivity of four djfferent permutations of time-averaging or
instantaneous detection methods and on-~axis or radially-averaged focal-plane quantities,
using the geometry of Pig. 1.

P T T
3 e
- 1@ ‘é‘
= F b
o s ]
a | KEY [IN ORDER PLOTTED)] ]
Wl <t> , U=@
N._l (t> & <u>,Uo=l
Me bumsgs =g
8 [ <uw,Uoml & t=0
= |
° b
4

-' N

18

.:‘2 .. -2

B = k.n.I.L/n.

Pigure 5. Calculations showing that, for a Gaussian spacetime beam, the most
sensitive measurement scheme among the four studied involves recording the
peak power trangmitted by a focal plane iris with diameter egua) to the
beam waist of the linear optical distribution, while calorimetric
measurements on axis are the least sensitive.

Experimenta) Applications of the Analysis

Figure 6 shows the generic experimental setup we employed in demonstrating agreemant
between experiment and theory, and in using this agreement to determine the nonlinear
index of some materials, by using n; as the only free parameter. The Fig. 1 gecmetry
iz Jocated to the right of the llmp?o in the figure. Calibrated attenuators were
optically flat anrd w!gqo-froo pPlates of CaFz. The CO3 laser source has been
described elsewhere.

In particular, the beam !n the experiment reaion is itse)f derived from the central
part of the far~field distribution produced by the laser, so that its transverse profile
is accurately Gaussian dowr to the 1-28 intensjty points, extremely smooth compared to
typical near-field beams, and essentially diffraction-limited in its ovn far field,

In 811 measurements, & 33-cm focal length, anti-reflection coated ZnSe lens was used
to produce a foval plane distribution with 300-um small-signa) 1/e< diameter. A
centrally-Yscated iris of *he same size was used to obtain radially-sverage® signals,
while intentity-dependent Streh! measurements were made with a much smaller aperture
wirhin which the small-signal radia) intensity variation was only +15%,

The detection system consisted of pyroelectric detectors and a LASL-bui’x,
chlnno!-plat,;intonlifioe oscilloscopr., The detection system #iectrica) bandwidth {s

about 3 GHz,"° giving a Cdetection risetime at least 10 times faster than that of the
2-ns FWHM )aser pulses enplioyed.



B
R

vhen time-averaging of the detected signa’s was required, this was accomplished by
numerical’ly integrating the detected signals, rather than via the calorimeters shown, for
best experimental accuracy. The calorimeters were used to monitor sample transmissior T,
in the relationship Lggs = (1-T) /0, where a is the measured absorption coefficient.

Calibroted Splitter

Brightness
Attenuator

Splitter Sensor

lnput %
Beam i
S2 GW/ecm?
10.8 um
(Gavssian
Profile)

input
Calorimeter

Pyroelectric
Detectore

Transmission
calerimeter

Figure 6. PExperimental Setup

To test the a_solute agreement between this and more fundamental methods of measuring
nonlinezr index, two anti-reflection coated, monocrystalline, intrinsic Ge boules were
used. One of these was the same bou)e employed in reference 16, where the 10-um
nonlinear sugceptibility was first measured vis ellipme rotation. The ingles were
orianted so as to give an ny determination which would correspond to X§ . Por the
greatest tota) sample Jength employed, the Bq. 8 inequality was satisfied in the ratio
66:1, while B values greater than 7.5 were not employed. 1In this case the time-averaged
intensity-dependent Strehl was measured.

It wil) be seen from Fig. 7 that the agreement obtained between the data and the model
is extremely good, and that mutual agreement was obtained between the two sets of data,
for sample lengths covering a 3:1 range. This was the greatest range we could fise
without unduly atcenuacigg the beam at one extreme, or reaching the plasma formation
threshold at the other. The result of this one-free-paramet2r study gave absolute
agreement with the reference )6 measurement, to within a factor of two.
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Figure 7. Measured time averaje relative brightness Yoag in the central zone of “he far

#1e'A4 ve, B for L=5.7 cm (0) and L®17.9 em(*) using intrinsic Ge ye value

of ns used is this case was 0.0026 cmi/Gw, which corresponds to x%ll
» 6.3 x 107 easu, in factor-of-two agreement with ref. 16.



To demonstrate the relative effects of space- and time-~averaging experimentzlly, we
used a different bdoule of the same material, 14.2 cm in length. As shown in Fig. 8, a
different crystal orientation produced a somewhat smaller nonlinear index. 1In this case
the threshold for (reversible) plasma formation was deliberately exceeded on the last
three laser shots. Here, che most sensitive measurement coafiguration showr in Fig. 5
was studied, and compared to the time-averaage of that data. 1In the former, the power
transmitted by the 300-um focal plane iris at a time corresponding to the input pulse
peak is recorded for increasing values of By.
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Figure 8. Measured power transmited by ug-l focal plane iris at input pulse peak (o)
and transmjitted pulse energy (¥) vs By for 14.2 cm Ge boule. The same
nonlinear index was used to fit the data in both cases, ny; = 0,0017
em/GW. The plasma formation threshold is exceeded for the last three shots
on the right, causing divergence from the model.

While reviewing this data, it became clear that the temporal shape of the output pulse
obtained in this configuration is probably the mos: sensitive indicator of small changes
in nonlinear index. Pigure 3 illustrates this point by showing the dramatic changes in
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Figure 9. Calculated pulse ehapes “ransmitted by ua=l foca’' plane ‘ris for a Gaussjan
input pulge time variation, for severa! values of Ba. Ir thiz i{nstance, .he
normalization refllects true output power, relative %o the peak of the Bowl
pulse in the absence of nonl'jinearities,



*he power pulse through the ug=l iris ca'culated for several values of peak incident
intensity when the incident pulse has a Gaussian time variation.

These predictions can be stucdied experimental’y by comparing an observed power pulse
shape transmitted by the iris to that predicted from the time-resolved laser pulse shape
incident on the sample, with suitable propagation delay adjustments. This is done by
Jetting the digitized input pulse shape drive the radia) averaging caleculations. Such a
comparison is presented in Fig. 10 which shows the excellent agreement between the
observed and predicted pulse shzpes obtained with the same ny value ugsed in Fig. 8, as
well as the distinctly different result predicted with a 40% larger nonlinear index. In
fact, 10% resolution is easily obtained with this fitting technique.
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Pigure 10, Predicted (dashed line) and observed (s0)id line) output pow:r pulses for the
conditions described in Pig. 8 when the peak incident intensity was 160
/

MW/cm<, usigg n2=0.0019 cm</GW, compared to the predicted shape for
n2=0.0027 cm</GW (Jdotted line).

Minimum sensjtivity of this technigue can be estimated from Fiy. 5 as ny = 3 x 10-11
esu in Ge, or ny»3 x 10~13 esu in NaCl, at CO; wavelengths.

Conclusions

We have reported exact analytic expressions for determining the far-field intersity
distribution produced by a general hypergaussian beam in a suitably thin, transparent,
opcically nonlinear window. These expressions also permit analytic radial- and/or
time-averaging of far-field intensfties. Sufficient agreement is demonstrated between
experiment and cheory to justify using far-field power measurements as an adequate means
of determininy the non)inear index of materjals in some circumstances. Factor-of-two
absolute accuracy is claimed, with )0% resolution in nonlinear index value. Sensitivity
of the technique is moderately good.
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